Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit.

نویسندگان

  • Yong Shi
  • T S Zhao
  • Z L Guo
چکیده

In this paper, by introducing a different distribution function and starting from the Boltzmann equation as well as the Maxwell-Boltzmann distribution, we obtain a Boltzmann Bhatnagar-Gross-Krook (BGK) equation for thermal flows with viscous heat dissipation in the incompressible limit. The continuous thermal BGK model is then discretized over both time and phase space to form a lattice BGK model, which is shown to be consistent with some existing double distribution function lattice BGK models based on macroscopic governing equations. We have also demonstrated that the lattice BGK model derived theoretically in this work can be used to simulate laminar incompressible convention heat transfer with/without viscous heat dissipation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rayleigh-Bénard simulation using the gas-kinetic Bhatnagar-Gross-Krook scheme in the incompressible limit.

In this paper, a gas-kinetic Bhatnagar-Gross-Krook (BGK) model is constructed for the Rayleigh-Bénard thermal convection in the incompressible flow limit, where the flow field and temperature field are described by two coupled BGK models. Since the collision times in the corresponding BGK models can be different, the Prandtl number can be changed to any value instead of a fixed Pr=1 in the orig...

متن کامل

Lattice ellipsoidal statistical BGK model for thermal non- equilibrium flows

A thermal lattice Boltzmann model is constructed on the basis of the ellipsoidal statistical Bhatnagar-Gross-Krook (ES-BGK) collision operator via the Hermite moment representation. The resulting lattice ES-BGK model uses a single distribution function and features an adjustable Prandtl number. Numerical simulations show that using a moderate discrete velocity set, this model can accurately rec...

متن کامل

External and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method

The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...

متن کامل

Possessions of viscous dissipation on radiative MHD heat and mass transfer flow of a micropolar fluid over a porous stretching sheet with chemical reaction

This article presents the heat and mass transfer characteristics of unsteady MHD flow of a viscous, incompressible and electrically conducting micropolar fluid in the presence of viscous dissipation and radiation over a porous stretching sheet with chemical reaction. The governing partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) by applying suitable si...

متن کامل

Reply to “Comment on ‘Heat transfer and fluid flow in microchannels and nanochannels at high Knudsen number using thermal lattice-Boltzmann method”’

In this reply to the Comment by Li-Shi Luo, we discuss the results of the lattice Bhatnagar-Gross-Krook (LBGK) model for high-Knudsen-number (Kn) flow and heat transfer, in the range of Kn 1. We present various studies employing the LBGK model for high-Kn flow and heat transfer simulations. It is concluded that, with the use of the LBGK model in the thermal lattice Boltzmann method for Kn 0.8, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 70 6 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004